High-order Symmetric Schemes for the Energy Conservation of Polynomial Hamiltonian Problems
نویسنده
چکیده
We define a class of arbitrary high order symmetric one-step methods that, when applied to Hamiltonian systems, are capable of precisely conserving the Hamiltonian function when this is a polynomial, whatever the initial condition and the stepsize h used. The key idea to devise such methods is the use of the so called discrete line integral, the discrete counterpart of the line integral in conservative vector fields. This approach naturally suggests a formulation of such methods in terms of block Boundary Value Methods, although they can be recast as Runge-Kutta methods, if preferred. c © 2009 European Society of Computational Methods in Sciences and Engineering
منابع مشابه
The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملSymplectic and symmetric methods for the numerical solution of some mathematical models of celestial objects
In the last years, the theory of numerical methods for system of non-stiff and stiff ordinary differential equations has reached a certain maturity. So, there are many excellent codes which are based on Runge–Kutta methods, linear multistep methods, Obreshkov methods, hybrid methods or general linear methods. Although these methods have good accuracy and desirable stability properties such as A...
متن کاملAn efficient symmetric polynomial-based key establishment protocol for wireless sensor networks
An essential requirement for providing secure services in wireless sensor networks is the ability to establish pairwise keys among sensors. Due to resource constraints on the sensors, the key establishment scheme should not create significant overhead. To date, several key establishment schemes have been proposed. Some of these have appropriate connectivity and resistance against key exposure, ...
متن کاملA total variation diminishing high resolution scheme for nonlinear conservation laws
In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...
متن کاملSymmetry group, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation
In this paper Lie point symmetries, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation are investigated. First of all Lie symmetries are obtained by using the general method based on invariance condition of a system of differential equations under a prolonged vector field. Then the structure of symmetry ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009